

RHIC/AGS USERS' CENTER

Poster designed by Chenxin Yang Pratt

prsorensen@bnl.gov

Outline

- ☐ Introduction
- ☐ Inclusive jet measurements
- $\Box \pi^0$ measurements
- ☐ Di-jet measurements
- □ Conclusion

How Gluons Contribute to Proton Spin

Proton Spin:

$$S_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

• $\Delta\Sigma$: ~0.3 measured by DIS

• ΔG : poorly determined by DIS and SIDIS

• L_q , L_g : undetermined yet.

Blümlein & Böttcher, NPB 841, 205 (2010) with fit to DIS data only

➤ Leader et al, PRD 82, 114018 (2010) with fit to DIS and SIDIS data

• LSS'10p: $\Delta G = 0.32 \pm 0.19$

• LSS'10: $\Delta G = -0.34 \pm 0.46$

Exploring Gluon Contribution at RHIC

Double spin asymmetry A_{LL}:

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \propto \frac{\Delta f_a \Delta f_b}{f_a f_b} \widehat{a}_{LL}$$

 Δf : polarized parton distribution function

For most RHIC kinematics, gg and qg dominate, making A_{LL} for jets and π^0 sensitive to gluon polarization

Mukherjee and Vogelsang, PRD.86.094009

(= 2p_/ \s)

RHIC Facilities

- Spin varies from rf bucket to rf bucket (9.4 MHz)
- Spin pattern changes from fill to fill
- Spin rotators provide choice of spin orientation
 - Billions of spin reversals during a fill with little depolarization

STAR Detectors BEMC **EEMC FMS TPC VPD VPD ZDC ZDC BBC BBC**

- High precision tracking with Time Projection Chamber
- High energy resolution with Barrel Electro-Magnetic Calorimeter, Endcap Electro-Magnetic Calorimeter and Forward Meson Spectrometer
- Additional detectors (Beam-Beam Counter, Vertex Position Detector, and Zero Degree
 Calorimeter) for relative luminosity and local polarimetry

STAR Experiment Unique Access to Gluon Polarization

Longitudinally polarized pp collisions at 200 GeV and 510 GeV allow both cross section and double spin asymmetry A_{LL} measurements on:

Inclusive Jet

x down to ~ 0.05 for jets in the mid-rapidity at 200 GeV (x down to ~0.02 at 510 GeV)

... Inclusive π^0

x down to \sim 0.02 for forward π^0 0.8 < $|\eta|$ < 2.0 at 200 GeV

❖ Di-jet

Correlation unfolds x₁, x₂ at the leading order

Complementary to each other to achieve large x_g coverage of gluon polarization

- ☐ Inclusive jet measurements
- $\Box \pi^0$ measurements
- ☐ Di-jet measurements

For 2006 200 GeV data (see back-up)
 Mid-point cone algorithm

Adapted from Tevatron II – hep-ex/0005012

- a. Seed energy = 0.5 GeV
- b. Cone radius R = 0.7 in η - φ space
- c. Split/merge fraction f = 0.5
- For 2009 200 GeV data

Anti-k_T algorithm

Cacciari, Salam, and Soyez, JHEP 0804, 063

- Jet parameter R = 0.6
- For 2012 510 GeV data

Anti-k_⊤ algorithm

Jet parameter R = 0.5

Use Pythia + Geant to quantify detector response

Sjostrand, Mrenna, and Skands, JHEP 05, 026

Inclusive Jet Cross Section from 2009 Data

X. Li for the STAR collaboration, DIS 2015

- Good agreement with several NLO pQCD calculations after hadronization and underlying event correction is applied
- Inclusive jet cross sections also calculated in two sub η ranges $0 < |\eta| < 0.5$ and $0.5 < |\eta| < 1.0$
- Jet production well understood at STAR

DSSV – First Global Analysis with Polarized Jets Data

- The first global NLO analysis to include inclusive DIS, SIDIS, and RHIC pp data on an equal footing
- Found relatively **small gluon polarization** within the region 0.05 < x < 0.2 that was sampled by the STAR 2006 data

Improvements for 2009

- 2009 jet patch trigger upgrades
 - \circ Overlapping jet patches and lower E_T threshold improve efficiency and reduce trigger bias
 - Net increase of 37% in jet acceptance
 - o Remove beam-beam counter trigger requirement
 - Trigger more efficiently at high jet p_T
 - Measure non-collision background
- Increased trigger rate and reduced thresholds enabled by DAQ1000
- Sampled ~ 4 times the figure-of-merit relative to 2006
- Nearly 20-fold increase in event statistics
- Improvements in jet reconstruction
 - Subtract 100% of track momentum from struck tower energy (2009) instead of MIP (2006)
 - Overall jet energy resolution improved from 23% to 18%
 - Switch from mid-point cone with cone radius 0.7 to anti-k_T with jet parameter 0.6 (a. less susceptible to soft diffusion and underlying events; b. increase in statistics)

Inclusive Jet A_{II} from 2009 Data

arXiv:1405.5134

- 2009 STAR inclusive jet A_{LL} measurements are a factor of 3 (high- p_T) to >4 (low- p_T) more precise than 2006
- A_{LL} falls in the middle among several recent polarized PDF fit predictions
- A_{LL} is somewhat larger than predictions from the 2008 DSSV fit
 - Points toward positive Δg in the accessible x region

Two New Polarized Distribution Fits

> DSSV, PRL 113, 012001

➤ NNPDF, NPB 887.276

- Both DSSV and NNPDF have released new polarized PDF fits
- Both find 2009 STAR jet A_{LL} results provide significantly tighter constraints on gluon polarization than previous measurements
- Both find evidence for positive gluon polarization in the region x > 0.05
 - \circ DSSV: $0.19^{+0.06}_{-0.05}$

at 90% C.L. for x > 0.05

 \sim NNPDF: 0.23 ± 0.07

for 0.05 < x < 0.5

2012 pp 510 GeV Run

- 510 GeV longitudinally polarized pp collisions
 - average polarization 53%
 - \circ analysis of data of integrated luminosity 50 pb⁻¹
- 510 GeV provides sensitivity to smaller x_g
- Same jet reconstruction method except using smaller cone radius R = 0.5
 - Reduced pile-up effects
 - Better matching probability from detector jet to parton jet
- $|\eta| < 0.9$
 - Narrower vertex distribution in 2012
- Non-collision background and transverse residual double spin asymmetry found to make negligible contributions

2012 Inclusive Jet A_{LL}

- Trigger and reconstruction bias dominates the systematic uncertainties
- Relative luminosity systematic uncertainty is 4 ×10⁻⁴
- Results agree well with latest NLO predictions

^{*}systematics will be reduced in the final results (coming soon)

2012 Inclusive Jet A₁₁ with 2009 Data

- Higher collision energy extends $x_T = 2p_T / \sqrt{s}$ to lower region
- 510 GeV results agree well with 200 GeV data in the overlapping x_{τ} region

Increased Precision at 200 GeV Coming Soon

STAR also anticipates significant future reductions in the uncertainties for 200
 GeV collisions relative to the 2009 results thanks to the RHIC 2015 run

- ☐ Inclusive jet measurements
- $\Box \pi^0$ measurements
- ☐ Di-jet measurements

π^0 Measurements at STAR

PRD.89.012001

- Studied π^0 production at $0.8 < \eta < 2$ in 200 GeV pp collisions from 2006 data
- Measure γ from π^0 decay in electromagnetic calorimeter

• STAR has measured the inclusive π^0 cross section over a wide pseudo-rapidity range

Inclusive π^0 Double Spin Asymmetry A_{LL}

> PRD.89.012001

NPB 887.276:
 NNPDFpol1.1
 prediction with STAR
 200 GeV data (0.8 < η < 2.0)

 Needs greater precision to constrain NLO fit

Inclusive π⁰ Double Spin Asymmetry A_{LL}

NPB 887.276:
 NNPDFpol1.1
 prediction with STAR
 200 GeV data (0.8 < η < 2.0)

- Will achieve much greater precision with 510 GeV data that are currently being analyzed
 - Higher Vs also pushes the sensitivity to lower x_g

π^0 Measurements at Further η Region

> C. Dilks for the STAR Collaboration, SPIN 2014

- π^0 measured in FMS at 2.5 < η < 4.0 by using 2012 and 2013 510 GeV data
- Isolated π^0 measured by 2- γ isolation cone with cone radius 35 mr and 100 mr
- A_{II} of isolated π^0 calculated

- A_{LL} not dependent on isolation cone cut (in contrast transverse asymmetry A_N depends on isolation cone cut, see more details in Mriganka's talk)
- Isolated $\pi^0 A_{tt}$ consistent with zero
 - \circ Constant fit to isolated $\pi^0 A_{LL}$:
 - 35mr cut: $A_{LL} = -2.5 \times 10^{-4} \pm 6.5 \times 10^{-4}$ with $\chi^2/NDF = 7.8/5$
 - 100mr cut: $A_{LL} = -3.3 \times 10^{-4} \pm 8.4 \times 10^{-4}$ with $\chi^2/NDF = 7.8/5$
- The same features in isolated $\pi^0 A_{LL}$ vs. $E_{\gamma\gamma}$
- Inclusive $\pi^0 A_{LL}$ currently under investigation

- ☐ Inclusive jet measurements
- $\Box \pi^0$ measurements
- **□** Di-jet measurements

Di-jet Measurements at STAR

$$x_{1} = \frac{1}{\sqrt{s}} \left(p_{T,3} e^{\eta_{3}} + p_{T,4} e^{\eta_{4}} \right)$$

$$x_{2} = \frac{1}{\sqrt{s}} \left(p_{T,3} e^{-\eta_{3}} + p_{T,4} e^{-\eta_{4}} \right)$$

$$M = \sqrt{x_{1} x_{2} s}$$

$$y = \frac{1}{2} \ln \frac{x_{1}}{x_{2}} = \frac{\eta_{3} + \eta_{4}}{2}$$

$$/\cos\theta^{*} /= \tanh \frac{/\eta_{3} - \eta_{4}/2}{2}$$

- Di-jets permit event-by-event calculations of x_1 and x_2 at leading order
- Use the same technique to reconstruct di-jets as the inclusive jets

Di-jet Cross Section at 200 GeV and 500 GeV

- Di-jet cross section is well-described by NLO pQCD with corrections for hadronization and underlying event
- Will have A_{II} for 2009 di-jets at 200 GeV soon
- Also analyzing A_{LL} for di-jets at 510 GeV using data from 2012 and 2013

Di-jets in Further Future

- STAR is planning to install a Forward Calorimeter System (FCS) in ~2020
- This will enable di-jet measurements with one or both jets in the **forward** region (2.8 < η < 3.7)
- FCS will provide information about gluon polarization at
 - a) $x \sim 5 \times 10^{-3}$ with FCS-EEMC di-jets
 - **b)** $x \le 10^{-3}$ with **FCS-FCS** di-jets

- o √s = 500 GeV
- Cone Algorithm, R = 0.7
- \circ E_{T,3} > 5 GeV, E_{T,4} > 8GeV

- Assumed integrated luminosity: 1000 pb⁻¹
- Assumed polarization: 60%

Di-jets in Further Future

Conclusion

- STAR inclusive jet, π^0 , and di-jet A_{LL} measurements are unique to explore gluon contribution to proton spin
- STAR 2009 inclusive jet A_{LL} results provide the first experimental evidence for positive gluon polarization in the RHIC range
- STAR 2012 510 GeV inclusive jet A_{LL} results extend measurements at **lower x**_g and **agree well** with STAR 2009 200 GeV data in the overlapping x_T range
- More results coming up in the near future
 - First measurements:
 - Di-jet A_{LL} at 200 GeV (2009)
 - Di-jet A_{LL} at 510 GeV (2012 and 2013)
 - Inclusive π⁰ A_{LL} at 510 GeV (2012 and 2013)
 - Improved precision for:
 - Inclusive jet A_{LL} at 200 GeV (2015)
- In the further future, STAR will use **forward di-jets** to explore gluon polarization at very **low** x_g (~10⁻³)

Back Up

Inclusive Jet Cross Section from 2006 Data

- Good agreement between data and simulation
- Good agreement with NLO pQCD calculation after hadronization and underlying event correction is applied
- Jet production is well understood at RHIC energies

Inclusive Jet A_{LL} from 2006 Data

> PRD 86, 032006

• STAR inclusive jet A_{LL} from 2006 excluded those scenarios that had a large gluon polarization within the accessible x region

